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Stochastic Printability Failures 
Examples from a Logic 10 nm node Local-Interconnect layer 
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Printing Failures happen 

OPC calibration says OK, but … 

We attribute those issues to the stochastic effects in EUV. 
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Where do these stochastic effects come from? 

Our previous study revealed those 

failures decrease at higher dose. 
 

Photon Shot Noise does impact. 

Mask  
after OPC 

Image intensity 
= photon-absorption 

Low dose 

Actual absorbed photons/nm3 

High dose 
Dose 

Peter De Bisschop et. al., SPIE 2014, 9048-8 

But: this is not the only cause 
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Low dose High dose 
Dose 

Goal of this Study:  
Investigate also impact of Resist Parameters 

High dose requires throughput reduction  Not preferable. 

Therefore we explored other path in resist parameters. 

Resist Parameters 

? ? 



Quantification of Printability Failures  
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Peter De Bisschop et. al., SPIE 2014, 9048-8 
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= NOK (%) 
LCD msr 

S {Lbridge 1 + Lbridge 2 + ∙∙∙} 

Lbridge 1 

The amount of local bridging in trench arrays is used to 

assess the probability of the printability failures. 
 

It can be quantified from ; 
 

1. Length along which the CD is measured ∙∙∙ LCD msr 

2. Total length of bridges in this area ∙∙∙ Lbridge 

Lbridge 2 

Taking statistics over multiple images 
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Printed trench width is 
the same for all pitches: 

We decided to qualify resists at  21nm CD through pitch 120-250nm 

Evaluation Feature 
Peter De Bisschop et. al., SPIE 2014, 9048-8 

Higher pitches 
have more failures 



Resist # Polymer PAG Quencher 
DtS  

(mJcm2) 

Resist 01 Polymer-A PAG-A Q-A 33.5 

Resist 02 Polymer-A PAG-B Q-A 34.2 

Resist 03 Polymer-A PAG-C Q-A 33.3 

Resist 04 Polymer-B PAG-B Q-A 34.6 

Resist 05 Polymer-C PAG-B Q-A 34.6 

Resist 06 Polymer-D PAG-B Q-A 36.4 

Resist 07 Polymer-E PAG-B Q-A 35.1 

Resist 08 Polymer-F PAG-B Q-A 35.1 

Resist 09 Polymer-G PAG-B Q-A 36.9 

Resist 10 Polymer-H PAG-B Q-A 30.6 

Resist 11 Polymer-I PAG-B Q-A 31.9 

Resists & Results  
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 11 different resists with a similar DtS were evaluated 

to look into the impact of PAGs and polymers. 

 Polymer does clearly have an impact on NOK. 

PAG Polymer 

Target CD = 21nm 



Polymer Parameters vs. NOK 
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Resist # 
Polymer 

PAG Quencher 
name Hydrophobicity* Rmin* Rmax* 

Resist 02 Polymer-A -0.488 -0.600 0.077 PAG-B Q-A 

Resist 05 Polymer-C 0.594 -0.200 -0.538 PAG-B Q-A 

Resist 06 Polymer-D -0.488 0.829 0.385 PAG-B Q-A 

Resist 07 Polymer-E -0.488 -0.620 -0.231 PAG-B Q-A 

Resist 09 Polymer-G -1 (lowest) 0.200 1 (highest) PAG-B Q-A 

Resist 10 Polymer-H -0.685 -1 (lowest) -1 (lowest) PAG-B Q-A 

Resist 11 Polymer-I 1 (highest) 1 (highest) -1 (lowest) PAG-B Q-A 

*Normalized range around the average 

The results are suggesting that the resist polymer needs to 

have lower hydrophobicity, higher Rmax for better NOK. 

Hydrophobicity Rmin Rmax 



Interpretation 
 ~ Low Hydrophobicity, High Rmax  Good NOK ~ 
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Given some stochastic failure is locally occurring before development,  

For example 
 

• Optically  ; photon displacement, absorption error 
 

• Chemically ; acid creation/de-protection failure 

During Development After Patterned 

Better case 

• Non-exposed area  Higher affinity 

• Exposed area   More dissolvable 

Hydrophobicity, Rmax of polymer would play for developer/rinse solvent, 

Worse case 

• Non-exposed area  Lower affinity 

• Expose area   Less dissolvable 
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Resist # Polymer 
PAG 

Quencher 
name Acidity* ADL* 

Resist 01 Polymer-A PAG-A -1 (lowest) -1 (lowest) Q-A 

Resist 02 Polymer-A PAG-B 1 (highest) 0.55 Q-A 

Resist 03 Polymer-A PAG-C -1 (lowest) 1 (highest) Q-A 

*Normalized range from average 

Polymer de-protection 

can be facilitated by, 
 

Stronger acid 

More diffusive acid 

PAG Parameters vs. NOK 

Slight trend on PAG acidity and ADL might (or not) exist. 

More data points are needed to justify. 

Acidity Acid Diffusion Length (ADL) 

● = acid 



Intermediate Conclusion 

Stochastic printability failures (=NOK % in this study) 
becomes better if the resist has following parameter, 

 In polymer, 

• Lower hydrophobicity 

• Higher Rmax 
 

 In PAG (possibly), 

• Higher acidity 

• Longer acid diffusion length 

 

In practical case of resist 09 vs. 12, we found the better 
NOK with improving resist sensitivity. 
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Resist # 
Polymer PAG 

Quencher 
name Hydrophobicity Rmin Rmax name Acidity ADL 

Resist 12 Polymer-H Higher Lower Lower PAG-A Lower Lower Q-A 

Resist 09 Polymer-G Lower Higher Higher PAG-B Higher Higher Q-A 



SEM Images in 1D structures 
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Pitch 70 nm 80 nm 90 nm 100 nm 120 nm 150 nm 200 nm 

Resist 12, DtS 40.0 mJ/cm2 

Pitch 70 nm 80 nm 90 nm 100 nm 120 nm 150 nm 200 nm 

Resist 09, DtS 36.9 mJ/cm2 

Resist 09 showed better 1D trench printability than Resist 

12 with higher sensitivity. 
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EP_0001.tif 

SEM Images in 2D structures 
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Resist 12, DtS 40.0 mJ/cm2 

Resist 09, DtS 36.8 mJ/cm2 

Resist 09 showed better 2D trench & hole printability than 

Resist 12 with higher sensitivity. 

21 nm ~Dense trenches: both OK 
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Summary 

 Stochastic printability failures are one of the concerns 

for the processing on EUV. 

 A dose increase can mitigate this problem, but it of 

course causes a throughput reduction. 

 Our current research shows that also a proper choice of 

resist parameters helps reduce these printing failures 
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